Learn Something about What Capsaicin Is
  • 1504
  • Jimmy at
  • September 19, 2017

Capsaicin; 8-methyl-N-vanillyl-6-nonenamide) is an active component of chili peppers, which are plants belonging to the genus Capsicum. It is an irritant for mammals, including humans, and produces a sensation of burning in any tissue with which it comes into contact. Capsaicin and several related compounds are called capsaicinoids and are produced as secondary metabolites by chili peppers, probably as deterrents against certain mammals and fungi. Pure capsaicin is a non-volatile, hydrophobic, colorless, highly pungent, crystalline to waxy compound.

chili peppers 

Biosynthetic pathway

Plants exclusively of the Capsicum genus produce capsaicinoids, which are alkaloids. Capsaicin is believed to be synthesized in the interlocular septum of chili peppers and depends on the gene AT3, which resides at the pun1 locus, and which encodes a putative acyltransferase.


Biosynthesis of the capsaicinoids occurs in the glands of the pepper fruit where capsaicin synthase condenses vanillylamine from the phenylpropanoid pathway with an acyl-CoA moiety produced by the branched-chain fatty acid pathway.

 

Capsaicin is the most abundant capsaicinoid found in the Capsicum genus, but at least ten other capsaicinoid variants exist.[31] Phenylalanine supplies the precursor to the phenylpropanoid pathway while leucine or valine provide the precursor for the branched-chain fatty acid pathway.[27][28] To produce capsaicin, 8-methyl-6-nonenoyl-CoA is produced by the branched-chain fatty acid pathway and condensed with vanillamine. Other capsaicinoids are produced by the condensation of vanillamine with various acyl-CoA products from the branched-chain fatty acid pathway, which is capable of producing a variety of acyl-CoA moieties of different chain length and degrees of unsaturation. All condensation reactions between the products of the phenylpropanoid and branched-chain fatty acid pathway are mediated by capsaicin synthase to produce the final capsacinoid product.

Capsaicin 

Natural function

Capsaicin is present in large quantities in the placental tissue (which holds the seeds), the internal membranes and, to a lesser extent, the other fleshy parts of the fruits of plants in the genus Capsicum. The seeds themselves do not produce any capsaicin, although the highest concentration of capsaicin can be found in the white pith of the inner wall, where the seeds are attached.


The seeds of Capsicum plants are dispersed predominantly by birds: in birds, the TRPV1 channel does not respond to capsaicin or related chemicals (avian vs. mammalian TRPV1 show functional diversity and selective sensitivity). This is advantageous to the plant, as chili pepper seeds consumed by birds pass through the digestive tract and can germinate later, whereas mammals have molar teeth which destroy such seeds and prevent them from germinating. Thus, natural selection may have led to increasing capsaicin production because it makes the plant less likely to be eaten by animals that do not help it disperse. There is also evidence that capsaicin may have evolved as an anti-fungal agent: the fungal pathogen Fusarium, which is known to infect wild chilies and thereby reduce seed viability, is deterred by capsaicin, which thus limits this form of predispersal seed mortality.


In 2006, it was discovered that the venom of a certain tarantula species activates the same pathway of pain as is activated by capsaicin; this was the first demonstrated case of such a shared pathway in both plant and animal anti-mammal defense.